Isometric shifts on C0(X)
نویسندگان
چکیده
منابع مشابه
Examples and Counterexamples of Type I Isometric Shifts
We provide examples of nonseparable spaces X for which C(X) admits an isometric shift of type I, which solves in the negative a problem proposed by Gutek et al. (J. Funct. Anal. 101 (1991), 97-119). We also give two independent methods for obtaining separable examples. The first one allows us in particular to construct examples with infinitely many nonhomeomorphic components in a subset of the ...
متن کاملOn Perturbations of the Isometric Semigroup of Shifts on the Semiaxis
Perturbations (r τt)t≥0 of the semigroup of shifts (τt)t≥0 on L(R+) are studied under the assumption that r τt−τt belongs to a certain Schatten–von Neumann class Sp with p ≥ 1. It is shown that, for the unitary component in the Wold– Kolmogorov decomposition of the cogenerator of the semigroup (r τt)t≥0, any singular spectral type may be achieved by S1-perturbations. An explicit construction is...
متن کاملOn Isometric and Minimal Isometric Embeddings
In this paper we study critial isometric and minimal isometric embeddings of classes of Riemannian metrics which we call quasi-κ-curved metrics. Quasi-κ-curved metrics generalize the metrics of space forms. We construct explicit examples and prove results about existence and rigidity. Introduction Definition: Let (M, g̃) be a Riemannian manifold. We will say g̃ is a quasi-κcurved metric if there ...
متن کاملOn isometric Lagrangian immersions
This article uses Cartan-Kähler theory to show that a small neighborhood of a point in any surface with a Riemannian metric possesses an isometric Lagrangian immersion into the complex plane (or by the same argument, into any Kähler surface). In fact, such immersions depend on two functions of a single variable. On the other hand, explicit examples are given of Riemannian three-manifolds which ...
متن کاملLectures on quasi-isometric rigidity
Inspiration: Simple noncompact connected Lie groups — Irreducible symmetric spaces of noncompact type (E.Cartan et al). Here there is an essentially 1-1 correspondence between algebraic objects (a Lie group of a certain type) and geometric objects (certain symmetric spaces). Namely, given a Lie group G on constructs a symmetric space X = G/K (K is a maximal compact subgroup of G) and, conversel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2002
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(02)00363-3